Ergodic Theory and Measured Group Theory Lecture 3

Equallish. "Expodic" is a made-up word, if it was me, I availd've
used "atomic" inclead, Ergodicity is defined not just for
a transformation or group action on
$$(X, I)$$
, but more genera-
lly, for an equivalence relation on (X, I) . For a men. trans.
 $T: (X, I) \rightarrow (Y, I)$, bacing the orbit of rel. Er in mind,
we define:

Det. lit t be an equiv. relation on a measure space (k, d), Eis called ergodic if every mensurable E-invariant

Equivalent definitions. For a news transformation T: (X, M) -> (X, M), TFAE: (1) T is regodic. (2) Functional def. Every T-invariant meas. Function f: X & Y litere Y

is any standard brad spece) is constant a.e.
(3) Density dif. For each positively - measured set A, a.e. orbit intersects
X
it, i.e. a.e.
$$x \in X$$
 has $Ix_{ET} \land A \neq O$.
Equivalently, IA_{ET} is conall.
Proof (21=>(1) For any T-inv. near set $A \in X$, $defor f = I_A$. Due
 $f: X \rightarrow \{0,1\}$ is T-inverticet, hence $f = I$ are or $f = P$ are.
(1)=>(1) Proof for $Y = 2^N$. Let $f: X \rightarrow 2^N$ be a T-inv. meas. Since
Note Net by the invariance of $f, f^{-1}(B)$ is T-invariant
for every Borel us $B \leq 2^N$. We used by show ket
 $\exists g \in 2^N$ it. $f^{-1}(y)$ is a conall $\leq X$.
 $f^{-1}(V_B)$ is X so it's conally obser $V_{3} = 5 \times \epsilon 2^{N}$: x-sup
(all a victure see 2^{CN} heavy of $f^{-1}(V_{3})$ is conall.
 $f^{-1}(V_{3}) = f^{-1}(V_{3})$.
 $f^{-1}(V_{3}) = f^{-1}(V_{3})$.

Examples of ecodic transformations. O Irrational rotation. let de [-TT, TT) be s.t. d E RIQ. Let $T \cong \mathbb{R}/\mathbb{Z} \cong S'$ and let $T_{d} : T \to T'$ be the rotation by d, i.e. $T_{d}(s)$ Note that if $d/T \in \mathbb{C}$ then T_{d} is periodic, i.e. every orbit is finite, hence nonergodic. (HW. Why nonergodic?)

lemma. If the Q then each Tar-orbit is dense in T. loof. Enough to prove that the orbit of 1 is classe since were other orbit is just a codation/tracslade of this. The true of d_1, d_2 is $\leq d_1$. So $T_{k}(1)$ But one of d_1, d_2 is $\leq d_1$. So Poind this enough dimes gives arbitrarilysmall augles.

99% Lemna (special case of Lebesgue diff. theorem). For any positivelynearmal subset A = [0, 1), there is an open interval J = [0,1) s.t. 299% of I a occupied by A, i.e. $\lambda(ANI) = 0.99$.